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Summary of the Milestone 

Species distribution models have become a paramount tool to biodiversity assessments. And this tool, 

in combination with remote sensing products and the current global datasets of species ground 

observations, results in a powerful approach to monitor biodiversity at multiple spatial and temporal 

scales.  

 

Even though, great advancement in the development of these tools has been reach, the strength of this 

combination - modelling methods, remote sensing products and species observations - relies in its 

informed, and careful, selection and application using integrative modelling approaches. 

 

The goal of this milestone is to provide the first species distribution models using throughput 

methods, relying on open source algorithms. To accomplish this goal we divided the milestone in four 

main areas:  

 

1. Data sources: Species distribution models require reliable information regarding the 

environmental conditions at the study area, as well as ground observations of the focal 

species. There are multiple sources of this information, and they vary in their characteristics 

and quality, and therefore must be selected depending on the system and aim of the study.  

In this section of the milestone, there is a description of the sources of environment and 

species data that includes an assessment of the strengths and weaknesses for species 

distribution modelling. 

 

2. Biotic interactions: Species distribute depending on their physical requirements (i.e. 

environmental variables) and the distribution of other species (e.g. predators, prey, hosts, 

parasites, etc.), thus quality of the distribution models also depend on the information 

regarding the characteristics and biotic interactions of the focal species. 

In this section, biotic interactions are described in the light of species distribution  

 models, in order to provide a background for their inclusion in the integrative modelling 

approaches that are being developed as part of EU BON. 

 

3. Species distribution models: In this section the first integrative species distribution 

modelling approaches that have been developed by the partners in task 4.1 are described, 

providing information on the methods, implementation and the outcomes. Additionally, there 

is an analysis of sampling bias due to data sources (environment and species) and site 

characteristics (e.g. small islands with high mountains) on species distribution models. 

 

4. Representation of uncertainty: Uncertainty in the outcomes of the species distribution 

models is due to the variability in the characteristics and quality of the data sources and the 

modelling approaches. Such uncertainty must be explicitly presented in order to ensure 

transparency of the methods, and increase the applicability of the resulting models to end-

users.  

 This section includes the identification of uncertainty in the modelling approaches 

 applied with a set of strategies to quantify and present it. 

 

Finally, the links to other work packages and the future directions on the work of task 4.1 are 

presented. 

 

1. Introduction 

Species distribution models are an important tool to predict current species and to project potential 

(past and future) distribution across landscapes. This can be done based on changing environmental 

predictors, such as different scenarios on land and marine use and climatic data. In the previous 

Milestone (MS 411; Scoping out integrative analyses approaches for biodiversity distribution 
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modelling) we had identified a set of species distribution models that meet the aim of accounting for 

the variety of data available and can be implemented in Free and Open Source Software.  

 

We focus on four key challenges in the selection, implementation and analysis of species 

distribution models: i) the characteristics of the input data (Beck et al. 2014) and the evaluation of the 

effect of the properties of such data on the outcome, ii) the effect of the model algorithm itself, iii) the 

importance of explicitly incorporating spatial scale and biotic interactions in the modelling process 

and,  iv) the assessment and representation of the uncertainty contained in the outcome (Rocchini et 

al. 2011). 

 

In this milestone, and based on the methods previously selected (MS411), we analysed the 

characteristics of the available data sources, evaluated the effect of these data on the model 

performance, developed and tested integrative species distribution modelling techniques and scope 

approaches to represent uncertainty. All these, are using Free and Open Source algorithms. 

 

2. Achievements and current status 

 

2.1. Data sources 

 

2.1.1. Biodiversity data 

 
a. GBIF data 

 

One of the most important and increasingly used, source of species data, that is, species field-

observations, is the Global Biodiversity Information Facility (GBIF, 2015), an international open data 

infrastructure that allows access to more than 500 million records of more than 1.5 million species 

worldwide (www.gbif.org). Such a vast, and constantly growing, dataset is of high relevance for its 

potential applications within EU BON, as highlighted by WP2 in their deliverable D2.1. 

 

GBIF brings together data ranging from 1900 (but older records can also be found) to the current date 

and from museum collections to direct field observations (Fig. 1). Such an enormous database 

provides a huge potential for analysis of past, current and future trends in species distribution, but the 

ample range of data sources implies a large variation in the methods used/available which in turn 

affects the characteristics and accuracy of the records (Gaiji et al. 2013).  

 

Data used in species distribution models are prone to several sources of bias, which usually arise 

during data collection or sampling: (i) a spatial bias due to unequal distribution of sampling sites in 

space (Bean et al. 2012, Hortal et al. 2008), (ii) taxonomical bias, due to misidentification, and (iii) 

temporal bias that stems from an unequal sampling frequency of the different sites (Bean et al. 2012, 

Rota et al. 2011).  

 

Identification of specimens may also play a role in large datasets as taxonomical expertise varies 

largely among data sources, because there are changes in taxonomy across time, and finally because 

the newly found species are missing from the records. 

 

Furthermore, GBIF currently only provides presence data, but advancements are being made (in 

collaboration with EU BON) to include relevant information such us, absences, organism quantities, 

sampling protocol and sample size (http://eubon-ipt.gbif.org ). This limits the species distribution 

models that can be used, and only allows for relative likelihood to be modelled, not true probability of 

occurrence in cases were the surveying is not intensive enough to assume absence (Guillera-Arroita et 

al. 2015). This severely limits comparability between species and different models of the same 

species. 

 

http://www.gbif.org/
http://eubon-ipt.gbif.org/
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GBIF, undoubtedly, provides an essential database for the estimation of multinational scale trends in 

species distributions, which is of paramount importance in the development of species conservation 

strategies at multiple scales, from reserve design to global conservation priorities. Consequently, it is 

critical to find tools to provide outcomes that contained information on the degree of uncertainty that 

arise from the biases described. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Species observation of taxa plants in the GBIF dataset (website accessed Feb 2015). 

 

b. Local data sources (test sites) 

 

Significant data on biodiversity is frequently recorded by localized, small-scale, research efforts 

ranging from sporadic monitoring by a local authority to regular standardized sampling from a long 

term study. Typically, such data sets do not have an extensive geographic coverage; however their 

strength lies in the repeated sampling through time, producing time series that allow deriving temporal 

trends. 

  

Data from test sites can be quite different between sites, as sampling protocols tend to differ between 

countries and regions. Recent efforts aim at the homogenization of sampling and data recording, to 

allow for comparable analysis and results. In addition, some of these sites are operated as long-term 

ecological research (LTER) sites, where the sampling method is standardized. Adhering to an existing 

research framework promotes the formation of research networks that pool their data resources and 

make them more visible to data users (e.g. LTER Networks). 

 

Furthermore, long-term sampling often evolves through time, either adding or modifying the amount 

of data sampled. For example, research questions may change and require a new sampling framework 

(Kuemmerlen et al. accepted). This may hamper the applicability of data, but in general terms 

improves its quality. However, such issues in datasets may be overcome through the application of 

statistical methods. 

 

c. DNA sequence data 

 

DNA sequence data are a special case of presence only data. All restrictions mentioned for GBIF data 

do in principle also apply to sequence data. However, due to sampling strategies, data are even more 

scarce and hence in danger of having an even stronger spatial and temporal bias. Furthermore, DNA 

sequence is “translated” into “taxonomic hypothesis” which can result in a taxonomic bias, favouring 
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those taxa that are preferred for genetic analyses. Hence, using DNA sequence data for “species” 

distribution modelling hence requires even more care than when using ordinary species data. 

 

2.1.2. Environmental data 
 

In nature species show specific requirements that limit their distribution, thus each species (or set of 

species) occupies the space that matches the set of conditions that allow them to establish and survive. 

In this framework, environmental variables act as proxies to predict species distribution from species 

occurrences, and to project future trends via future environmental scenarios.  

 

However, the strength of the association between species and the physical environment is modified by 

biotic interactions, dispersal limitation, source-sink dynamics (Pulliam 2000) and the ability of 

species to cope with the environment, and all these factors, together with the environmental variables, 

take place at multiple scales (Whittaker et al. 2001). At large scales, species composition varies with 

global climate patterns (Rhode 1992) while at smaller scales, species composition is affected by local 

environmental conditions, biotic interactions and dispersal (Duivenvoorden et al. 2002). 

Consequently, spatial scale constitutes an essential feature when predicting species distribution (Henle 

et al. 2014, Domisch et al. 2015). Currently, models are available to incorporate dispersal and biotic 

interactions into SDM (e.g. Kissling et al. 2012). 

 

The environmental data available comes from multiple sources (e.g. meteorological stations, satellite 

data, etc) and thus vary in accuracy and resolution (Metz et al. 2014). But, the selection of 

environmental data sources depend on, the ecology of the study species (or set of species), the 

characteristics of the data in terms of resolution, extent and quality of both environmental data as well 

as the species occurrences and the research question for which the SDMs are used. Below we provide 

a brief description of the environmental data sources focusing on the applications for species 

distribution modelling. 

 

a. Bioclimatic variables 

 

The Worldclim and Climond datasets include 40 climate layers (19 layers in Worldclim and 16 in 

Climond, Table 1) derived from the interpolation of monthly climate data from weather stations 

(Hijmans et al. 2005), offering an impressive set of environmental estimates, of the terrestrial portion, 

for entire world at a spatial resolution of 1 km
2
 extracted from a temporal extent of 50 years (from the 

year 1950 to the year 2000). However, there are a number of concerns in the accuracy of the grid 

values especially for areas with a lower number of weather stations and, according to the authors, in 

mountainous areas for some of the variables (Hijmans et al. 2005). Also one needs to take into 

account that the high resolution data stems from a scaling procedure and may indeed be representative 

for a much coarser resolution. 
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Table 1. Bioclimatic variables contained in the Worldclim (1 to 19) and Climond (1 to 35) dataset. Table 

modified from Hutchinson et al. (2009) and Kriticos et al. (2014). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Environmental variables are divided into three groups: Variables 1 to 19 are known as the core 

variables because they are calculated only based on temperature and precipitation data (Table 1). 

Variables 20 to 27 provide data on solar radiation, and 28 to 35 are calculated from data on soil 

moisture (e.g. atmospheric moisture content, Hutchinson et al. 2009), and variables 36 to 40 

correspond to the first five principal components of the 35 variables, this allows capturing more 

than 90% of the variance in the full dataset (Kriticos et al. 2014). Variables 36 to 40 are best suited 

for distribution models of species from which information on their ecology is scarce (Kriticos et 

al. 2014). 

 

b. Land Surface Temperature (LST) dataset 

 

Derived from satellite data, the high-resolution land surface temperature (henceforth LST) contains 

bioclimatic variables 1 to 7, 10 and 11 (Table 2) at a spatial resolution of 250m extracted from a 

temporal extent of 10 years (2000-2013) with a daily coverage and with a spatial extent of Europe, 
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these dataset can provide 4 maps per day using a newly proposed method to reconstruct the LST time 

series at the continental scale (Metz et al. 2014). And, as of now, Metz and colleagues are working to 

reconstruct the other 10 variables missing from the Bioclim 'core variables set'. 

 
Table 2.  Climatic variables contained in the LST dataset. Table extracted from Metz et al. 2014. 

 

 

 

  

 

 

 

 

 

 

 

 
 

 

c. Land use and landcover data (LULC) 

 

Land use and land cover data refers to the information on the type of cover (e.g. forest, wetland, 

grassland) or use (agriculture, urban, mining) given to and specific land unit. It is derived from 

satellite imagery and is commonly presented in a raster or grid format using a set of categories used to 

classify the land.  

 

The large number of ecosystem types and land uses, coupled with the constant changes in the human 

societies imply a rapid rate of change in the LULC products, which, as a consequence, are commonly 

developed at local scales, but there are a number of big projects in which the maps are developed, at 

coarser resolutions in time and space, at the continental or global scales. 

 

Land Cover map (CCI-LC) 

 

The Climate Change Initiative (CCI) of the European Space Agency (ESA) generated Landcover 

maps for three series of time (1998-2002, 2003-2007 and 2008-2012) using a multi-sensor strategy 

(MERIS and SPOT-Vegetation time series). The maps have a temporal resolution of 5 years and a 

spatial resolution of 300m. 

 

CORINE Landcover 

 

The CORINE (Coordination of information on the environment) programme was created in 1985 to 

compile information on the environment status (e.g. land uses, state of natural areas, distribution and 

abundance of wild areas and water resources and assessment of hazards) across the European Union 

(EEA, 1995). 
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Table 3. Characteristics of CORINE landcover products  

 
After the first inventory of 1990 and since then there has been three updates (2000, 2006 and 2012). 

The number of countries involved in the project has increase (from 26 to 39 countries, see Table 3) as 

well as the accuracy, while the production time has been reduced (see Table 3). 

 

The products include 44 cover classes that span include artificial surfaces (e.g. fabrics, urban areas, 

mines, construction sites), agricultural areas (e.g. arable land, permanent crops, pastures), forest and 

semi-natural areas (e.g. forests, shrubs, grasslands), spaces with scarce or no vegetation (e.g. beaches, 

dunes, glaciers), inland and maritime wetlands (e.g. marshes, peat bogs) and marine and inland water 

bodies (EEA, 1995). 

 

GlobCover Land Cover 

 

Developed by the European Space Agency in collaboration with a network of partners (EEA, FAO, 

GOFC-GOLD, IGBP, JRC and UNEP) uses the MERIS satellite imagery (January 2005 to June 2006) 

to create a land cover map of the world for 2005. The GlobCover products include: bimonthly MERIS 

full resolution mosaics, annual MERIS full resolution mosaic, Globcover land cover map (December 

2004-June 2006), and regional GlobCover land cover maps (Bicheron et al. 2008). In 2010 a second 

version (GlobCover 2009) was released (Arino et al. 2009). It classifies the land cover in 22 classes 

that include artificial surfaces, forests, grasslands and croplands (Bicheron et al. 2008). 
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Globeland30 

 

This global land cover map launched by China in 2010, consist of a 30 meters spatial resolution 

product with 10 landcover types (e.g. cultivated area, forest, grassland, etc) and for the years 2000 and 

2010 within a four years period. It was developed using multispectral images including the TM5 and 

ETM + of America Land Resources Satellite (Landsat) and the multispectral images of China 

Environmental Disaster Alleviation Satellite (HJ-1) (Chen et al. 2011).   

  

d. Land use changes and trends 

 

Land use patterns across the landscape are constantly changing. Due to its pervasive effect on the 

distribution patterns exhibited by biodiversity it is a relevant factor to include in the estimation of 

biodiversity current distribution and future trends. There are a number of recent projects developed to 

trace the changes of land use trough space and time. 

 

The CAPRI model 

 

The CAPRI (Common Agricultural Policy Regionalized Impact analysis) model is a “multi-purpose” 

economic model that consists of a combination of databases from the Farm Accounting Data Network 

(FADN) and modelling methods, implemented a software that includes about 50 animal and crop-

based products in the European Union (Britz & Witzke 2012).  

 

e. Hierarchical structure of habitat classification scheme  

 

Most LULC (e.g., CORINE) or habitat classification schemes (e.g., EUNIS) have a hierarchical, tree-

like structure, in which fine categories are nested within more general categories. This hierarchical 

structure plays an important role in rule-based (knowledge based) classification, in which experts first 

provide rules that separate general categories from one another, and then move down the hierarchy 

while providing more specific rules for finer categories. The main advantage of rule-based 

classifications is in the more process-based understanding they provide and in the ability to apply the 

model without ground truth data. However, rule-based classifications have several shortcomings. 

First, expert knowledge is not always available and the labour time of experts is expensive. Second, 

fine tuning rules for a system are time consuming. Third, rule based classification is static since the 

rules are specific to the available input-data layers, and cannot be automatically updated when new 

input data becomes available, or when old data becomes unavailable.  

 

Alternatively, in recent years there is a growing usage of machine-learning algorithms (e.g., Support 

Vector Machine, Random-Forest) for habitat classification. These methods offer a cheap and dynamic 

modelling framework, with similar accuracies as knowledge-based classification. However, most 

machine learning classification methods follow a flat classification approach (sensu Silla & Freitas 

2011), in which all terminal nodes are classified simultaneously in a ‘one-against-all’ approach. In 

addition, the machine learning algorithms are ‘black-boxes’ and unlike rule-based classification are 

not based on understanding underlining processes that govern the distribution of different categories.  

 

As part of deliverable D3.1 of WP3 (task 3.1), we developed a novel machine-learning based 

hierarchical classification method, which accounts for the pre-defined hierarchical structure of the 

habitat classification scheme, while avoiding the need of expert knowledge. The method is based on 

applying randomForest (Breiman 2001) as the local classifier at each parent node along a pre-defined 

class hierarchy. The hierarchical randomForest (HRF) tool was codified as an R package 

(‘HieRanFor’), with clear help files and examples. A tutorial can be found in deliverable D3.1 and 

fully working version of the package will soon to be submitted to CRAN. First test of the HRF model 

have shown that it provides higher accuracy in the validation test than a flat classification approach. It 

also provides a more detailed understanding of the relative importance of different variables in 

different branches of the hierarchical classification scheme. The HRF method can create fine-scale 
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LULC or habitat layers that may be plugged as input to SDMs, using either global (e.g., EUNIS) or 

species -specific classification schemes. Potentially, HRF can also be used as a SDM algorithm, if the 

distribution of a given species is modelled according to a hierarchical structure (e.g, first level 

separation of suitable vs. unsuitable habitats, and second level separation to occupied and 

unoccupied).   

 

f. Other environmental variables 

 

Abiotic properties such as geology, topography, among others, also change across the landscape at 

multiple spatial scales. These variables are characterized by its slow rate of change and where only 

abrupt events like anthropic driven land-use or catastrophic phenomena (i.e.volcano, floods, etc) can 

modify them in the short-term. A very interesting dataset for European soil information is provided by 

the European Soil Database (2004).  

 

 
Table 4. Environmental data derived from remote sensing. 

 

2.2. Biotic interactions in species distribution models 

 
The nature of biotic interactions is complex, it can be facilitative (e.g. mutualism) or antagonistic (e.g. 

predation), direct (predator-prey) or indirect (plant-herbivore-predator), and can also vary in strength 

depending on the spatial context (i.e. environment, species structure, scale) and characteristics (i.e. 

traits) of the species involved in the interaction (Morales-Castilla et al. 2015). For example, at local 

spatial scales, the range of a predator can modify the range of the prey, while at large scales the 

behaviour of animal seed-dispersers can determine the limits of the distribution of the plant they 

disperse.  

 

Most of the studies have shown how biotic interactions can affect the response of species to the 

environment and determine its presence/absence at local scales (Bascompte, 2009), but there is also 

evidence of their importance in shaping the distribution of species at large scales (Brooker & 

Callaghan 1998, Tylianakis et al. 2008, Hanspach et al. 2014). Some studies have even demonstrated 

that climate change affects species interactions which in turn can determine whether a species can 

persist or adapt to the future climatic conditions (Gilman et al. 2010, Van der Putten et al. 2010). 

Consequently, it is paramount to identify the type and strength of the biotic interactions in order to 

accurately model the current and potential distribution of species. 

 

Most species distribution models rely on the assumption that biotic interactions do not influence 

species spatial patterns or only influence them at small spatial scales, and consequently they are built 

using only environmental predictors (Zimmermann et al. 2010). However, integrative approaches 

have been developed to include biotic interactions (e.g. Schweiger et al. 2012), which has resulted in 

improved models demonstrating the importance of including biotic interactions in SDMs (Kissling et 

al. 2012, Wisz et al. 2013).  
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One key ingredient in the application of such integrative approaches is reliable data on the ecology of 

the species, as well as the co-occurrence of species, with high resolution and at large extents. This is 

an ongoing effort leaded by a number of plot monitoring schemes that have collected spatial and 

temporal data that can be used to infer the characteristics and strength of the interactions among 

species. 

 

2.3. Species distribution models developed by the partners 

 

2.3.1. Catchment-scale freshwater species distribution models 

 
Partner: Senckenberg Gesellschaft für Naturforschung 

 
a. Description 

 

In this application, species distribution models (SDMs) are used to predict and analyse distributions of 

freshwater organisms at the catchment scale. Current efforts to improve the application of SDMs to 

freshwater ecosystems are focused on the Kinzig River catchment of central Germany, encompassed 

by the Rhein-Main Observatory (RMO), an EU BON test site and a long term ecological research 

(LTER) site. Although the environmental predictors consider the whole Kinzig catchment, distribution 

predictions are projected on the stream network only, which represents the freshwater ecosystem 

(Domisch et al., 2013). The stream network consists of 28, 205 grid cells at a spatial resolution of 

25m. 

 

SDMs are built using the R package ‘biomod2’ (Thuiller, Georges, & Engler, 2013) as ensemble 

models, which provides robust predictions (Araújo & New, 2007). Each model ensemble includes five 

algorithms (GLM, GBM, CTA, ANN, MaxEnt), three pseudo-absences (PA) runs and ten repetitions 

for each combination of algorithm and PA run. PAs are necessary because of the presence-only nature 

of most data used in SDMs. 150 models are built per taxon, but only those surpassing a certain model 

performance indicator threshold, are taken into account in the ensemble model (in this case TSS = 

0.6). To calculate the performance indicators, occurrence data is randomly split in each repetition into 

a 70% calibration and a 30% testing subset. 

 

Models are evaluated in terms of their performance (TSS and ROC/AUC). The predictor importance 

for each species determined. Predicted probability of occurrence, predicted binary occurrence and 

mapped uncertainty are produced for each ensemble model. 

 

b. Implementation 

 

 Species data 

 

Data from the monitoring scheme in the RMO-LTER are used to build the SDMs, providing precise 

information on the sampling: frequency, exact location, a uniform method and standardized 

taxonomic identification. Occurrence data is supplemented with sampling carried out by the local 

authorities. Focal organism groups are stream macroinvertebrates and fish. 

 

 Environmental data 

 

Models incorporate climatic, topographic, hydrological, land use and geological predictors. These 

environmental predictors are either specific to freshwater ecosystems (e.g. hydrology) or modified to 

fit the hierarchical structure of river networks (e.g. sub-catchment specific approach (Kuemmerlen et 

al. 2014). 
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 Test site 

 

SDMs are built for the Rhine-Main-Observatory (RMO) test site located in central Germany. The 

RMO, a long term ecological research site (LTER), encompasses the entire Kinzig River catchment 

(ca. 1 100km
2
), a tributary of the Main River, close to its confluence with the Rhein River. 

 

c. Outcomes 

 

First predictions have been made for the current distribution of stream macroinvertebrates, including 

175 taxa. Currently, the main focus is on identifying and analysing bias sources within the dataset 

used. These results will be described in a manuscript that is in preparation. 

 

d. Challenges 

 

Bias arising from sampling is a major problem concerning the occurrence data (Kuemmerlen et al. in 

press). This bias has two main sources: (a) spatially uneven sampling results in the overrepresentation 

of some areas (e.g. because of easy access, or monitoring targeted at specific goals), while others are 

underrepresented (e.g. headwaters in freshwater ecosystems); (b) different sampling frequencies 

across the study area (if data from different sources is used) will lead to varying detection probability 

of species (most SDM approaches assume homogeneous detection probability at all sites and 

detectability across species). 

 

The greatest challenge is to fully adapt species distribution predictions into freshwater habitats by 

including the hierarchical structure of stream networks, as it improves predictions (Domisch et al. 

2013). However, large scale approaches still model freshwater biota on a continuous landscape, 

analogous to terrestrial biota. For catchments small to moderate in size (< 2000 km
2
), this has been 

achieved already (Kuemmerlen et al. 2014), but for larger catchments (>2000 km
2
) this is still a 

challenge as environmental predictors specific to freshwater ecosystems are largely lacking. Two main 

issues stem from the physical properties in streams: the hydrology and the temperature. Hydrology, 

identified frequently as being among the most important predictors, is a complex environmental 

variable to obtain, as it is obtained from hydrological models which are rare even in Europe. 

Temperature, as currently SDM approaches rely on atmospheric temperature, rather than on water 

temperature. More freshwater-relevant predictors that would undoubtedly be of interest include 

dissolved oxygen and pollutants, however these are significantly more difficult to achieve as 

measurements are scarce. Making such predictors available for freshwater models and extensive areas 

would significantly improve model quantity and quality, however producing them is a challenge in 

itself. 

 

e. Future developments 

 

The next steps with include modelling the current distribution of fish at the catchments scale for the 

RMO-LTER, under the same conditions and using the same method as from the stream 

macroinvertebrates. Further efforts include projecting distributions into the future to determine 

possible changes in taxonomic richness, range size, elevation and species turnover. 
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2.3.2. The SpaNiche hybrid model 
 
Partner: University of Leeds  

 

a. Description 

 

Species distribution models (SDMs) are commonly applied to infer species distributions to areas that 

are unsampled based upon their niche space (correlations with environmental predictors). However, 

there remain several issues that are unresolved in their application. 

 

First, the probability of occurrence needs to be converted to a binary presence-absence map through 

application of a threshold without information of what the total number of occupancies should be. The 

choice of criteria for the threshold is problematic, and without current consensus (e.g. Liu et al. 2005), 

and they may be currently unsuitable to assess trends in status (Guillera-Arroita et al., 2015). 

Furthermore, a single threshold is applied universally across the SDM. In reality, a cell of high 

suitability is more likely to be occupied if surrounded by low suitability cells. A single-threshold 

approach will assign both cells as the same status. 

 

Second, modelling only takes into account the correlation of the species distribution with regards to 

environmental predictors, but ignores the spatial aspects important for structuring a species 

distribution. These include the scale of spatial autocorrelation due to dispersal abilities, where areas 

are of high environmental suitability but remain uncolonised due to dispersal barriers, and often 

unknown historical factors. Thus species distribution models largely predict the potential, rather than 

the realised distribution. 
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Figure 2. Flow diagram of the SpaFigure 2. Niche model. For the niche modelling, species 

distribution models are generated through ensemble modelling (A) and thresholds applied to 

generate presence-absence maps (B). Accuracy is measured for each threshold (C) and the 

accuracy-threshold curve plotted (D; niche consistency). For the spatial modelling, atlas data at a 

coarse-grain size is downscaled to create an occupancy-area relationship curve (OAR; F). Each 

map from B is upscaled to create a threshold-OAR (E), and the divergence measured from the 

downscaled OAR (G), and the divergence-threshold curve plotted (H; spatial consistency). 

Finally, the balance between niche- and spatial-consistency is explored by plotting accuracy 

against divergence (I) to determine the optimal threshold. 
 
 

On the other hand there are spatial models. At the grain size of the SDM, large areas of the landscape 

are unsampled and so probability of detection is 0 in these locations. If data is presence-only, we also 

only have a probability of detection of 1 where a record occurs, but nowhere do we have a certainty of 

absence. As the grain size is coarsened the probability of detection (and therefore the certainty of our 

absences) increases. At the atlas scale the probability should approach 1, and therefore we can have 

high certainty that our presences and absences are correct, although at a grain size much coarser than 

an SDM. We can downscale the occupancy at the coarse atlas scale to predict the proportion or area of 

occupancy (AOO) at the finer grain size of the SDM (Barwell et al., 2014). However, such models 

ignore environmental aspects and so do not reveal the location of those occupancies. 
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The SpaNiche model, under development in WP3 (Task3.3), attempts to combine these two 

contrasting approaches in to a hybrid approach. Ultimately, it aims to select a threshold, or range of 

scale- or cell-specific thresholds, for the SDM that is accurate at the fine grain size the SDM is carried 

out, but remains spatially-consistent with the spatial patterns at the coarse-grain size. 

 

The SpaNiche model achieves this in two ways (Fig. 2). First, if we assume a probability of detection 

of 1 for all cells at the atlas scale, then we can use the absences at this scale as a mask for the SDM. 

Therefore, all those areas that are atlas-scale absences are converted to a probability of occurrence of 

0 in the SDM (arrow from Fig. 2F to Fig. 2A). 

 

We then create an accuracy-threshold curve for the SDM using a measure of accuracy (e.g. kappa 

statistic) for the presence-absence maps created after application of all possible thresholds (Fig. 2A-

D). This identifies the threshold that is most consistent with the fine scale occurrence (here we refer to 

this as niche consistency). 

 

Second, we create a distribution at a coarse grain size where probability of detection is high to create 

an atlas map. This can be an independent data set, or generated from the same data as for the SDM. 

We then downscale occupancy to the grain size of the SDM to create an occupancy-area relationship 

curve (OAR) (Fig. 2F). For each of the presence-absence maps created from the SDM thresholding 

(Fig. 2B) we upgrain the map, therefore creating a threshold-OAR for each threshold (Fig. 2E). We 

measure the divergence of each threshold-OAR from the original downscaled-OAR, creating a 

divergence-threshold curve (Fig. 2H). This identifies the threshold that is most consistent with the 

spatial scaling of occupancy (here we refer to this as spatial consistency). 

 

Finally, we can plot accuracy (niche consistency) against divergence (spatial consistency) in order to 

identify the threshold that best balances both aspects (Fig. 2I). 

 

b. Implementation 

 

As the model is still under development model-specifics are likely to be altered and adapted from its 

current state, so plans are still preliminary.  

 

Occupancy downscaling of the atlas data to generate the downscaled-OAR will be carried out using 

the ‘ensemble.downscale’ function in the ‘downscale’ package developed in WP3.2. and awaiting 

submission to CRAN. Creation of the threshold-OARs will be carried out with the ‘upgrain’ function 

in the same package. SDMs will be generated as ensemble models using the R package 'biomod2' 

(Thuiller, Georges & Engler 2013) in line with other studies in the work package. 

 

As model effectiveness has yet to be tested we will focus on running the model on a set of virtual 

species which will allow us to test accuracy against the known distributions at fine and coarse scales. 

These species are currently being generated using the R package ‘virtualspecies’ (Leroy et al. 2014) 

for testing with multiple other models (see Section 3: Directions), and so will allow us to directly 

compare model accuracy against a range of established SDMs under various conditions. 

 

If successful, we can then apply the model to real datasets for which there are, or we can generate, 

both atlas data and fine-scale presence data, such as the Wallonia birds data se 

 

c. Outcomes 

 

The SpanNiche model is currently undergoing development in WP3.3 in preparation for deliverable 

D3.2 (due date March 2016). The majority of the model has been finalised and coded in R, however, 

there still remains some important components to be developed and we expect it's final state to differ 

in some respects to that described. 
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2.3.3. Modelling DNA fungi data 

 
Partner: Helmholtz Centre for Environmental Research  - UFZ 

 

a. Description 

 

In order to study the relationship between species occurrences and climate and environmental 

variables and to predict species geographic distribution, certain statistical models and methods 

bundled under the term species distribution modelling (SDM) are well-established (Franklin, 2009). 

Instead of species, we use DNA data providing species concepts, provided by TARTU (Urmas 

Köljag). 

 

While the locations where the species was found can clearly be interpreted as “true” presences, the 

rest of locations can hardly be specified as “true” absences. As Hirzel et al. (2002) explained absence 

data are often difficult to obtain accurately because in many cases the species cannot be detected even 

though it is present. Moreover, all species seem to be extremely rare species, i.e. the number of 

pretended absences is much higher than that of presences. Therefore, the first step in the analysis must 

be a pseudo-absence selection taking the environmental conditions for the species into account. This 

is done by calculating a surface range envelop. Absence data only outside of this envelop, so-called 

pseudo-absence data, are incorporated into the analysis (Thuiller, Georges, & Engler, 2013). The main 

part of the analysis is a multivariate logistic regression. For this purpose, we use a Generalized Linear 

Model (GLM) for binary response data (McCullagh & Nelder, 1889). Because a stepwise predictor 

reduction my means of the Akaike’s Information Criterion (AIC) did not lead to better results, we 

incorporate the full set of environmental variables in the final analysis.  

 

For evaluation of the predictive performance of the model, it is common to split the dataset into 2 

parts: data for training and data for testing. According to the high number of predictors, we use the 

ratio 3:1, i.e. the models are built on 75% of the data (training) and validated on 25% (test). The 

selection is carried out randomly and repeated 50 times. Four criteria are used for assessing model 

quality: Kappa, MaxKappa, MaxTSS, and AUC. Kappa as a threshold-dependent measure of accuracy 

is given here for threshold 0.5. MaxKappa is the maximum value of Kappa for all possible thresholds. 

MaxTSS is the maximum value of TSS for all possible thresholds. AUC is threshold-independent.  

 

b. Implementation 

 

 “species” data 

 

Instead of species, we use global extent DNA data on fungi relating to species concepts, provided by 

TARTU (Urmas Köljag). We selected as examples the most frequent “species”, i.e. those species, 

which occur at the highest number of different locations. These are:  "SH044209.06FU" 

(frequency=93), "SH052254.06FU" (84), and "SH044721.06FU" (82). All the following analyses are 

carried out separately for these species. 

 

 Environmental data 

 

As environmental information, a set of CliMond variables was used. 

 

 Site 

 

The extension of the study was global, but in later runs was restricted to Europe to increase model 

performance. Resolution was point resolution scaled to the CliMond grid. 
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c. Outcome 

 

Distribution models for the three modelled species hypothesis were derived (see Figs. 3-5). Model 

quality is fair but can hopefully be improved by adding additional environmental layers, such as land 

cover, in future steps. 

 

 
 
Figure 3. Distribution data for "SH044209.06FU". Data for (a) true presences (red) and 

estimated pseudo-absences (yellow), (b) fitted values of presences (red) and absences (yellow). 
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Figure 4. Distribution data for "SH052254.06FU". Data for (a) true presences (red) and 

estimated pseudo-absences (yellow), (b) fitted values of presences (red) and absences 

(yellow). 
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Figure 5. Distribution data for "SH044721.06FU". Data for (a) true presences (red) and 

estimated pseudo-absences (yellow), (b) fitted values of presences (red) and absences 

(yellow). 

 

 

2.3.4. Effect of data sources (environment and species) on SDM approaches 

 
Partner: Fondazione Edmund Mach 

 

a. Description 

 

Species distribution models rely on the available data on species occurrences and environmental 

measurements. Data on species occurrences is often extracted from the global biodiversity 

information facility (GBIF), one of the largest sources of data on species occurrences that combines 

data from multiple sources (museum, field observations, monitoring schemes) into one large global 

database (Beck et al. 2012). Such a large coverage approach is found in the environmental proxies 

used to describe the climatic conditions, and that is the case of the Bioclim data, a global interpolation 

of weather station data used to generate raster layers of temperature and precipitation among other 

climatic variables, commonly used in the development of bioclimatic models. Consequently, while 

species occurrences from the GBIF database include biases due to the variation in sampling effort and 

number of studies per area, environmental data varies spatially depending on the uneven distribution 

of weather stations in the world.  
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In this application, the effect of data sources is evaluated for a set of species distribution modelling 

methodologies, using a multiscale approach. We are extracting data from GBIF for a selected a set of 

plant species (provided by Neil Brummit, NHM) with varying distribution (e.g. clustered, sparse, rare, 

common, etc). Moreover, to have a known distribution from which to sample occurrences, we have 

generated virtual species, using the R package 'virtualspecies' (Leroy et al. 2014). The species 

distribution models are built using the R packages 'biomod2' (Thuiller, Georges, & Engler 2013) and 

'ENiRG' (Canovas et al. 2014).  

 

b. Implementation 

 

 Species data 

 

Species data on a set of plant species is extracted from the GBIF facility using the R package 'rgbif' 

(Chamberlain et al. 2015). The data is processed to quantify the number of sources and sampling 

approaches used and to filter out occurrences with spatial issues. 

 

 Environmental data 

 

Two climatic dataset are used: the commonly used Bioclim dataset and the recently developed LST 

dataset. The environmental variables extracted from both dataset remain the same, and the LST 

dataset is applied using its resolution and a coarser resolution that matches the resolution of the 

bioclim dataset.  

 

 Site 

 

The tests are performed at multiple scales, starting with Europe as the larger scale and selecting a 

number of smaller extents. 

 

c. Outcomes 

 

Initial tests have been developed using a combination of data of three tree species, bioclim and LST 

data, at continental scale. The same combination has been applied in the case of a virtual species. The 

models have been built in the 'biomod2' (Thuiller, Georges, & Engler, 2013) and 'ENiRG' (Canovas et 

al. 2014) packages. The work has been focused on the selection of plant species relevant for our study, 

the development of virtual species, and the analysis of the variation in the models performance (AUC 

and TSS).  

 

d. Future developments 

 

The next steps will include the development of a Bayesian approach to explicitly show the spatial 

distribution of uncertainty, strictly linked to Task 4.5, in the species distribution modelling output. 

This will be done by relying on Markov Chains Bayesian models based on climatic priors 

 

 

 

2.3.5. Within-species spatial niche variation and projections of species 

distribution under future climate change 

 
Partner: European Bird Census Council / Centre Tecnològic Forestal de Catalunya (EBCC/CTFC) 

 

a. Description 
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Species distribution modelling often ignores that the niche of a species may vary within the 

geographical space it occupies (Pearman et al. 2008). Non-stationarity in the response of a species to 

environmental conditions may induce low predictive performance at a local scale and uncertain spatial 

inference across the studied area (Hawkins, 2012). Surprisingly, there is a lack of modelling 

approaches that deal with this issue and that are suited to use large samples of species to predict 

species distributions under future changing conditions (Osborne et al. 2007). Accordingly, it is largely 

unknown to which extent predictions of future species distributions may be altered when accounting 

for non-stationarity. 

 

In this application, we used a large sample of species and we compared the predictions of species 

distribution under future climate change according to (1) a global modelling approach that assumes a 

unique response of the species to climate conditions across Europe, and (2) a local modelling 

approach that deals explicitly with within-species, spatial niche variation. The local approach is based 

on partitioning procedures to split the entire distribution of the species in ecologically relevant 

subsets. Local models are built at the level of each subset and assembled with each other to capture 

within-species spatial niche variations across Europe.  

 

b. Implementation 

 

 Species data 

 

We used the dataset from the recent Distribution Atlas of Butterflies in Europe (Kudrna et al., 2011). 

We randomly selected a representative sample of butterfly species (N=120) to examine the effect of 

species range characteristics on the modelling outcomes as we expected that widely distributed 

species are more prone to show a non-stationary response to the environmental conditions than 

species associated with a geographically restricted range. 

 

 Environmental data 

 

Climate data were obtained from the Climatic Research Unit (CRU) climatological database with 10’ 

resolution (Mitchell et al., 2004). We derived the three most commonly used climate variables that 

reflected the main constraints on butterfly growth and survival (Heikkinen et al., 2010). Current 

climate data covered the period 1971-2000. Future climate data simulated climate conditions during 

the periods 1991-2020, 2021-2050 and 2051-2080 under a set of scenarios reflecting alternative 

plausible futures in Europe. 

 

 Site 

 

Grid-based distribution data after 1980 were extracted for all butterfly species across Europe using the 

ETRS89-LAEA reference system (Lambert Azimuthal Equal Area) at 50-km resolution. We rescaled 

the climate variables to the resolution of the butterfly species distribution data. 

 

c. Outcomes 

 

Based on an innovative modelling framework applied to a representative sample of species at large 

spatial scale, we provide novel insights into (1) the potential consequences of within-species spatial 

niche variation when predicting the future of biodiversity under climate change and (2) the 

importance of dealing explicitly with this issue when using modelling tools in conservation 

biogeography and global change research. Future research efforts should achieve a better balance 

between the development of local and global modelling approaches to better evaluate the level of 

uncertainty due to within-species spatial niche variation in global change impact assessments. 
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2.3.6. Use Case of Small Islands with high mountains. 
 
Partner: Royal Museum for Central Africa  

 

Based and translated from 'Louette, M.,  Abderemane, H.,  Yahaya, I. & Meirte, D. 2008. Atlas des 

oiseaux nicheurs de la Grande Comore, de Mohéli et d ‘Anjouan. Series ‘Studies in Afrotropical 

Zoology’, 294. Tervuren: RMCA. 240 p' funded in part by the Belgian Cooperation. This Atlas is the 

result of a cooperative project between the RMCA and several collaborating partners, notably the 

Convention for Biological Diversity-Comoros and the National Museum of the Comoros. 

 

Translated, compiled and further discussed by Patricia Mergen  

 

a. Description 

 

As reported in previous chapters of this report, BioClim/Worldclim data have a maximum resolution 

of about 30 arc seconds (about 1 km) for current data; going back into the past this resolution can drop 

to 1 or even 5 min arc or less. In the case of small islands downscaling is needed, because of the rapid 

topographic and environmental conditions variations as expressed thorough the literature (see e.g. 

Keener et al. 2012). Species Distribution modelling studies for terrestrial species are rarely undertaken 

on small islands because the available data is often biased and skewed towards more accessible areas 

only. For such a study on the island of Trinidad in the Caribbean, Maharaj and New (2013) warn 

about unevenly distributed location data and a too small number of occurrence points which induce 

poor performance of otherwise much used Species Distribution algorithms and associated software. 

For the environmental and climate data, they also refer to the issue that the too low resolution 

obtained by Global Climate models cannot make the difference between the conditions on the island 

and the surrounding oceans. The uneven topography of such islands has similar impacts on the 

modelling tools tested. However, if sufficient data is available and proper downscaling can be 

achieved using species modelling tools like Maxent, modelling indeed becomes possible, while still 

being challenging.  

 

The use case outlined here is based on the findings of the Atlas of breeding birds in the three western 

Comoro islands: Grand Comoro, Moheli and Anjouan (Louette et al, 2008). Data collected by RMCA 

staff and their collaborators from 1981 to 2006 was used in this study. In this particular case, it was 

not possible to obtain more data, or to perform sufficient downscaling to use classical species 

modelling tools. It is therefore interesting to find working alternatives to produce a valid atlas and 

identify potential ornithological zones of interest with relatively low data availability.  

 

b. Implementation 

 

The intention of the study is to define the areas of importance for the conservation of birds (birds 

being god indicators for biodiversity in general), with advanced analysis (Louette et al, 1995). The 

published book is intended both for the decision makers, researchers, amateurs and educators 

interested in the avifauna of the region.  

 

 Species data 

 

The species data consist of visual and sound observations, made from 1981 to 2006. In terms of 

breeding birds 59 species were observed, 47 on Grand Comoro, 44 on Moheli and 39 on Anjouan. 15 

endemic species and 51 endemic taxa were identified (some being endemic species, while others 

being endemic sub-species of non-endemic species). Only resident terrestrial birds are concerned, the 

marine birds along the shorelines were not studied for this purpose. The non-breeding birds were not 

considered in the analysis and in the Atlas, but were listed in a table for information. 
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Most observations were done along transects by standardized counting on predefined spots during 5 to 

15 minutes. Additional data was mined from field reports and published literature.  Taxonomic 

identifications were cross checked by specialists and doubtful records discarded from the analysis.  

 

All the data was carefully encoded with standard metadata associated:  

 

a) Team (acronym) 

b) The source (internal code), indicating whether or not it was along a transect for bird counts  (a 

path) 

c) Year, month and (if known) exact date of observation 

d) Which species 

e) Which island 

f) Latitude coordinates provided by the observer 

g) Longitude coordinates provided by the observer 

h) The system of coordinates provided by the observer 

i) The position, and if possible, the observation point, during the sequence of the journey 

j) The description of the observation point 

k) The altitude given by the observer 

l) Other details given by the observer 

m) Number of individuals 

n) Indications of nesting. 

 

In total there are more then 20 000 observations from about 2400 observation points. The 

georeferencing of these points have been checked, even when GPS information was available. 

Different background maps have been used including both online available maps, satellite imagery, 

but also paper maps which were scanned and georeferenced.  

 

 Environmental data 

 

Grid maps were produced featuring the habitats where the birds have been observed. A method of 

ecological envelops was used to assess the potential range both in distribution and altitude. Different 

algorithms and modelling tools like Maxent were tried out, but the available environmental datasets 

were not sufficient to have conclusive results. Finally, following parameters were measured: altitude, 

forested/non-forested areas, rainfall, rivers, lakes, and distances to villages or roads; in order to 

determine the extent of the areas where the birds could potentially breed. For the grids SRTM3 20×20 

was used, taking into account only those on the islands or touching them. Ecological parameters were 

also taken from the SRTM 3 database or inferred from other maps and literature.  

 

 Site 

 

The Comoro islands are an oceanic archipelago of 4 units situated in the Mozambique Channel 

between 11° 23’ and 13° S and 43°13’ and 45°18’ E more or less half way between the African 

continent and Madagascar.  Additionally to the challenge of their small size these islands are also 

characterized by volcanic mountains, some still active. Grand Comoro (1148 km²) has two mountains: 

Mount Karthala, an active volcano rising to 2 361 m and La Grille, an extinct volcano, rising to 1 087 

m. Interesting to know is that volcanic eruptions happened in 2000, 2003 and 2005 during the 

observation period concerned and which had a high short term impact on the vegetation and local 

environmental conditions. The two other islands studied for the atlas are smaller and have a very 

different profile with long extinct volcanos. Moheli with its 211 km² is hilly with a maximum of 790 

m high, while Anjouan (424 km²) presents steep cliffs rising to about 1 595 m with a central basin in 

between. The fourth island, Mayotte, was not studied for this atlas. 
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c. Outcomes 

 

The results showed that on all three islands the endemic birds’ preferred habitats are situated at higher 

altitudes. On Grand Comoro (the island with large tracts of vegetation in a pristine state) these zone 

represent the main forest area, on Moheli (with a relatively low human population) intermediate 

altitudes also showed habitats suitable for endemic bird species, while Anjouan with only forests 

patches left in otherwise agricultural lands, showed that less suitable habitats can be used to a certain 

extent by endemic species.  

 

The method consists of entering contiguous squares to the ecological envelope in an algorithmic 

calculation. The superposition of the grid maps for all species considered yields a map of 

ornithological interest. However, because the contribution of each species depends on the number of 

squares in which it is supposed to occur, a value is calculated for each. A total index of endemicity is 

calculated, taking into account the number of species present on each island (Louette & Meirte, 2009). 

 

 

d. Challenges and critical analysis  

 

While the data had not been originally collected in view to compile an Atlas, the extent of visual and 

acoustically observed bird counts and the abiotic data collected, compared favourably with the type of 

data used in other atlases. However, a bias was detected in terms of sampling efforts between the 

different islands and also, to a lesser extent, between different areas within a same island. It was 

estimated that the efforts have been sufficient to detect all breeding species with a good confidence, 

but these biases could have had a minor influence on the calculated distribution ranges. The collecting 

range is spread over 26 years, so the information available about vegetation and rainfall used may 

have varied during this period. Further biases are that the observations did not all take place during 

the same season or at the same time during the day. Especially only few counts were made during the 

night and some night active species presence may have been underestimated. As most observations 

have been made on land, marine birds could unfortunately not be included in the study.  

Additionally on these volcanic islands the environment varies a lot and the biotopes change rapidly 

along a gradient on the slopes of the mountains. Thus (because the observer is always some distance 

away) some birds might not have been recorded exactly in their preferred breeding habitat. The 

environmental parameters have mostly been inferred from maps to calculate the ecological envelops. 

However the time period in which these maps have been produced, may not correspond exactly with 

the moment of the observation of the bird. Land use and rainfall can have varied drastically in a short 

time frame, not forgetting the several volcanos outbursts in the concerned study period.  

 

The observation of very mobile units like birds does also not correspond to a point observation, but of 

a trajectory, thus the usage of grids of about 1800 m bases seemed anyhow more appropriate than 

using point data.  

 

The method used by the authors is qualified as not being a modelling in the classical definition of the 

term as only very few parameters could be used and some findings cannot be statistically verified. 

They base their method on similar approaches used in similar circumstances and also refer to Seoane 

et al. (2005), stating that conspicuousness, gregariousness and maximum ecological densities cannot 

be avoided in such studies and that greater efforts would not manage to yield that much better results 

in such conditions.  

 

Concerning rainfall data used in such modelling approaches, Staub et al. (2014) identified, in a case 

study on Mauritius, that the determination between rainfall and landscape properties give accurate 

estimates with linear regression models; however, they warn that these relationships can be 

complicated and biased by uneven station distribution and sparsity of available data. This is especially 

the case for mountains and small islands. These authors argue on the other hand for a need of more 

sophisticated and intensive algorithms to overcome these issues, to include more rainfall stations and 

taking into account the individual topographic features like slope orientation and weight the stations 
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data points to take the effects of the variables better into account. Models of rainfall for small islands 

were produced that were estimated as quite accurate. Nevertheless, there are still some limitations due 

to doubts on the quality or accuracy of the source data, which still leaves some uncertainties of 

potential over estimations in some areas. Some calibration and fine-tuning is still needed.  

 

In another context, but closely related, Martin (2008) identified in the Canary Islands IUCN home 

range thresholds for species that are equally affected by the uneven distribution of species. Almost all 

species find so their way on the Red Lists of threatened species of the Canary Islands, which made it 

in practice difficult to set priorities for most needed conservation areas for the decision makers. Here 

also an urgent plea was made that IUCN criteria be adapted and downscaled to fit the special 

environments of oceanic archipelagos.  

 

If we look at the wider picture of sustainability approaches and strategic environmental assessment, 

including also social-economic aspects and dialogues with decision makers, we find some examples 

in literature. While not achieving, as they had planned, to come out with a clear view on defining best 

sustainability approaches, Polido et al. (2014), identified that special priorities and protocols are 

needed for small islands in general. Recent studies by Van Wynsberge, et al, 2015 in French Polynesia 

compared the relevance of two approaches for conservation planning in small tropical islands (regular 

planning units versus data driven planning units). They identified that regular planning grids highly 

affected the models, while data driven planning units rendered better results even on small scale 

pattern of interest but reduced redundancy on the other hand. They suggested a 3 steps process to 

identify adequate trade-offs between planning unit size, planning unit redundancy and data loss to 

properly draw practical recommendations for small islands. 

 

e. Conclusions  

 

More sophisticated and global methods thus exist but were judged as inappropriate in the framework 

of the atlas of breeding birds of the Comoro Islands. Some squares could not be sampled at all and 

remain empty, often for accessibility reasons in the field. No probability of presence nor absence or 

pseudo-absence/present methods could be used. The authors remedied this by identifying the areas on 

the maps having the most similar ecological parameters as those where the bird was actually 

observed.  

 

The method was judged sound by the authors because there are sufficient filled squares per island and 

these are sufficiently widely distributed across each island. Thus a complete atlas of the resident birds 

of these islands was produced and zones of special ornithological interest could be outlined, despite 

the relative scarcity of available information. 

 

The approach could be tested in other mountainous oceanic islands areas, which have been unevenly 

monitored over time and space and where long data series are not available both in terms of observed 

species numbers, number of observations or specimens collected and associated available 

environmental and habitat parameters. 

 

 

2.4. Representation of uncertainty 

 

a. Catchment-scale freshwater species distribution models 

 
Partner: Senckenberg Gesellschaft für Naturforschung 

 

Uncertainty is measured by determining the variance in the predictions from all selected model runs, 

for single taxa. Therefore, current measures represent the uncertainty that arises from the ensemble 

model. This includes uncertainty between algorithms, PA runs, repetitions and of the data-splitting 
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procedure. Uncertainty is given for every grid cell and can be mapped on the stream network to 

evaluate its spatial distribution. 

 

b. Effect of data sources (environment and species) on SDM approaches 
 
Partner: Fondazione Edmund Mach 

 

Uncertainty from sampling bias is represented as a cartogram that shows a deformation in the size of 

the country as a function of the differences in sampling effort per unit area (Fig. 6). We are working in 

the development of other tools/methods to represent uncertainty from other sources. 

 

c. Within-species spatial niche variation 

 
Partner: European Bird Census Council / Centre Tecnològic Forestal de Catalunya (EBCC/CTFC) 

 

The range of uncertainty that may arise from within-species spatial niche variation when predicting 

species distributions under future climate change is assessed through the comparison between the 

predictions from the local and global models. We used the same kind of approach as when assuming 

‘full’ and ‘no’ dispersal in the absence of reliable data on the dispersal abilities of the species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Cartogram, at the per country scale, of species occurrences (all taxa), extracted from 

GBIF data (website accessed Feb 2015). Error size above 100 indicates oversampling and error size 

below 100 indicates under-sampling. Polygon size represents the ratio between area of the country 

and the number of records.  

 

 

3. Directions 

 
Until now we have identified the properties of each of the elements needed and available to perform 

species distribution models. In the previous milestone we: (a) examined the characteristics of the 

various modelling approaches available, (b) selected a set of integrative modelling approaches and (c) 

highlighted the challenges to the distribution modelling process. In this this milestone we: i) evaluated 

the sources of environmental and species data available for species distribution modelling, ii) 

examined the characteristics and identified the advantages and possible limitations of such data 

sources and iii) started developing integrative approaches that deal with the sources of error in a way 

that its transparent to other WPs and end-users. We have already advanced in testing species 

distribution models at various spatial scales, multiple organization levels (e.g. species, communities), 
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and including biotic interactions. All the modelling work has been done using Open Source software, 

mostly the R software (R Core Team 2013) and GRASS GIS (Neteler et al. 2012, GRASS 

Development Team 2014). 

 

In the analyses of data sources we have included some of the outcomes from the gap analysis 

performed by WP2, and in the evaluation and development of species distribution models, we have 

incorporated the methods for habitat classification and the Land Surface Temperature variables 

developed as part of WP3. Additionally, the sources of uncertainty that we have identified, such as the 

one derived from the properties of the data sources (e.g. islands with mountains study case), are being 

used by task 4.5 in the study and quantification of uncertainty. 

 

The next developments will include: 

 

1. Modelling species distribution for a set of virtual species, with varying traits (e.g. rare, 

common, clustered, dispersed). The virtual species will be developed using the R software 

package “virtualspecies” (Leroy et al. 2014). Such package allows the user to generate species 

habitat suitability maps (based on random or customized parameters) from which species 

occurrences are drawn. The result is a set of species observations with a known habitat 

suitability that will be used to evaluate the various modelling outputs. This will be perform 

with two objectives: i) further examine and identify how species characteristics and sampling 

biases affect the output, and ii) to evaluate the outputs using each of the integrative SDMs 

developed and presented in this milestone. 

  

2. The development of a “roadmap” to species distribution modelling with examples using the 

integrative approaches developed in this task. The main objective of this “roadmap” is to 

provide information on how to perform species distribution models within a “good practices” 

framework, in which factors such as data quality, modelling approach, and biotic interactions 

are incorporated. 
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